Measurement of 19F(p, γ)20Ne reaction suggests CNO breakout in first stars

  • Clarkson, O. & Herwig, F. Convective H–He interactions in massive population III stellar evolution models. My. Not. R. Astron. Soc. 5002685–2703 (2021).

    ADS CAS Google Scholar Article

  • Heger, A. & Woosley, SE Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724341–373 (2010).

    ADS CAS Google Scholar Article

  • Angulo, C. et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. HAS 6563–183 (1999).

    ADS Google Scholar article

  • Arnould, M., Mowlavi, N. & Champagne, AE In Stellar Evolution: What Should Be Done?, Proc. 32nd Liège International Astrophysical Colloquium (eds Noels, A. et al) 17–29 (University of Liège, 1995).

  • deBoer, RJ et al. 19F(p, γ)20Not and 19F(p, α)16O reaction rates and their effect on calcium production in Population III stars from hot CNO breakout. Phys. Rev. VS 103055815 (2021).

    ADS CAS Google Scholar Article

  • Keller, SC et al. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36–670839.3. Nature 506463–466 (2014).

    ADS CAS PubMed Google Scholar Article

  • Kang, KJ et al. Status and prospects of a deep underground laboratory in China. J. of Phys. Conf. Ser. 203012028 (2010).

    Google Scholar article

  • Wu, YC et al. Measurement of cosmic ray flux in the China JinPing underground laboratory. Chin. Phys. VS 37086001 (2013).

    ADS CAS Google Scholar Article

  • Witze, A. The James Webb Space Telescope aims to unlock the early Universe. Nature 600208–212 (2021).

    ADS CAS PubMed Google Scholar Article

  • Burbidge, EM, Burbidge, GR, Fowler, WA & Hoyle, F. Synthesis of the elements in stars. Rev. mod. Phys. 29547–654 (1957).

    ADS Google Scholar article

  • Rolfs, CE & Rodney, WS Cauldrons in the Cosmos (Univ. Chicago Press, 1988).

  • Adelberger, EG et al. Solar fusion cross sections. II. Tea pp chain and CNO cycles. Rev. Mod. Phys. 83195–245 (2011).

    ADS CAS Google Scholar Article

  • Wiescher, M., Görres, J. & Schatz, H. Break-out reactions from the CNO cycles. J. Phys. G 25R133–R161 (1999).

    ADS CAS Google Scholar Article

  • Frebel, A. & Norris, JE Near-field cosmology with extremely metal-poor stars. Ann. Rev. Astro. Astrophys. 53631–688 (2015).

    ADS CAS Google Scholar Article

  • Takahashi, K., Umeda, H. & Yoshida, T. Stellar yields of rotating first stars. I. Yields of weak supernovae and abundances of carbon-enhanced hyper-metal-poor stars. Astrophys. J. 79440 (2014).

    ADS Google Scholar article

  • Ezer, D. & Cameron, AGW The evolution of hydrogen–helium stars. Astrophys. Space Sci. 14399–421 (1971).

    ADS CAS Google Scholar Article

  • Chan, C., Müller, B. & Heger, A. Black hole formation and fallback during the supernova explosion of a 40M star. Astrophys. J. 852L19 (2018).

    ADS Google Scholar article

  • Clarkson, O., Herwig, F. & Pignatari, M. Pop III I-process nucleosynthesis and the elemental abundances of SMSS J0313-6708 and the most iron-poor stars. My. Not. R. Astron. Soc. 474L37–L41 (2018).

    ADS CAS Google Scholar Article

  • Limongi, M. & Chieffi, A. Presupernova evolution and explosive nucleosynthesis of zero metal massive stars. Astrophys. J. Supp. Ser. 19938 (2012).

    ADS MATH Google Scholar Article

  • Sinclair, RM Gamma radiation from certain nuclear reactions. Phys. Rev. 931082–1086 (1954).

    ADS CAS Google Scholar Article

  • Farney, GK, Given, HH, Kern, BD & Hahn, TM High-energy gamma rays from the proton bombardment of fluorine. Phys. Rev. 97720–725 (1955).

    ADS CAS Google Scholar Article

  • Keszthelyi, L., Berkes, I., Demeter, I. & Fodor, I. Resonances in F19+ p reactions at 224 and 340 keV proton energies. Nucl. Phys. 29241–251 (1962).

    Google Scholar article

  • Berkes, I., Dézsi, I., Fodor, I. & Keszthelyi, L. The resonance at 483 and 597 keV proton energies in F19+p reactions. Nucl. Phys. 43103–109 (1963).

    CAS Google Scholar Article

  • Subotíc, KM, Ostojíc, R. & Stepančić, BZ Study of the 19F( p, γ)20Ne radiative capture reaction from 0.2–1.2 MeV.Nucl. Phys. HAS 331491–501 (1979).

    ADS Google Scholar article

  • Couture, A. et al. Measurement of the 19F(p,γ)20Ne reaction and interference terms from Ecm= 200–760 keV. Phys. Rev. VS 77015802 (2008).

    ADS Google Scholar article

  • Spyrou, K. et al. Cross section and resonance strength measurements of 19F(p, αγ)16O at Ep= 200–800 keV. Eur. Phys. J.A 779–85 (2000).

  • Williams, M. et al. New measurement of the Ecm= 323 keV resonance in the 19F( p, γ)20Don’t react.Phys. Rev. VS 103055805 (2021).

    ADS CAS Google Scholar Article

  • Broggini, C., Bemmerer, D., Guglielmetti, A. & Menegazzo, R. LUNA: nuclear astrophysics deep underground. Ann. Rev. Nucl. Go. Science. 6053–73 (2010).

    ADS CAS Google Scholar Article

  • Liu, WP et al. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA).Science. China Phys. Mech. Astro. 59642001 (2016).

    ADS Google Scholar article

  • Wu, Q. et al. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments. Nucl. Instr. Meth. HAS 830214–218 (2016).

    ADS CAS Google Scholar Article

  • Zhang, LY et al. Strong and durable fluorine-implanted targets developed for deep underground nuclear astrophysical experiments. Nucl. Instr. Meth. B 4969–15 (2021).

    ADS CAS Google Scholar Article

  • Zhang, LY et al. Direct measurement of the astrophysical 19F( p, αγ)16O reaction in the deepest operational underground laboratory. Phys. Rev. Lett. 127152702 (2021).

    ADS CAS PubMed Google Scholar Article

  • Su, J. et al. First result from the Jinping Underground Nuclear Astrophysics experiment JUNA: precise measurement of the 92-keV 25Mg(p, γ)26Al resonance. Science. Bull. 67125–132 (2022).

    CAS Google Scholar Article

  • Azuma, RE et al. AZURE: An R-matrix code for nuclear astrophysics. Phys. Rev. VS 81045805 (2010).

    ADS Google Scholar article

  • Uberseder, E. & deBoer, RJ AZURE2 User Manual (2015).

  • Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instruments. Meth. HAS 506250–303 (2003).

    ADS CAS Google Scholar Article

  • He, JJ et al. A proposed direct measurement of cross section at Gamow window for key reaction 19F(p,α)16O in asymptotic giant branch stars with a planned accelerator in CJPL.Science. China Phys. Mech. Astro. 59652001 (2016).

    Google Scholar article

  • Foreman-Mackey, D. et al. The MCMC hammer.Publ. Astro. Soc. Pacif. 125306–312 (2013).

    ADS Google Scholar article

  • Kios, M.Determination of nuclear reaction rates leading to the stellar nucleosynthesis of fluorine. PhD thesis, University of Paris-Sud (1990).

  • Rauscher, T. & Thielemann, F.-K. Astrophysical reaction rates from statistical model calculations.At.Data Nucl. Data Tables 751–351 (2000).

    ADS CAS Google Scholar Article

  • Weaver, TA, Zimmerman, GB & Woosley, SE Presupernova evolution of massive stars.Astrophys. J. 2251021–1029 (1978).

    ADS CAS Google Scholar Article

  • Pitrou, C., Coc, A., Uzan, J.-P. & Vangioni, E. Precision big bang nucleosynthesis with the new code PRIMAT.JPS Conf. proc. 31011034 (2020).

    MATH Google Scholar