3D-printed machines that manipulate microscopic objects using capillary forces

  • Bowden, N., Terfort, A., Carbeck, J. & Whitesides, GM Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276233–235 (1997).

    CAS PubMed Google Scholar Article

  • Tien, J., Breen, TL & Whitesides, GM Crystallization of millimeter-scale objects with use of capillary forces. J. Am. Chem. Soc. 12012670–12671 (1998).

    CAS Google Scholar Article

  • Liu, IB, Sharifi-Mood, N. & Stebe, KJ Capillary assembly of colloids: interactions on planar and curved interfaces. Ann. Rev. Condens. Matter Phys. 9283–305 (2018).

    ADS CAS Google Scholar Article

  • Yao, L. et al. Near field capillary repulsion. SoftMatter 9779–786 (2012).

    ADS Google Scholar article

  • de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004); https://doi.org/10.1007/978-0-387-21656-0.

  • Vella, D. & Mahadevan, L. The “Cheerios effect”. Am. J. Phys. 73817–825 (2005).

    ADS Google Scholar article

  • Ashkin, A., Dziedzic, JM, Bjorkholm, JE & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11288–290 (1986).

    ADS CAS PubMed Google Scholar Article

  • Moffitt, JR, Chemla, YR, Smith, SB & Bustamante, C. Recent advances in optical tweezers. Ann. Rev. Biochem. 77205–228 (2008).

    CAS PubMed Google Scholar Article

  • Ho, I., Pucci, G. & Harris, DM Direct measurement of capillary attraction between floating disks. Phys. Rev. Lett. 123254502 (2019).

    ADS CAS PubMed Google Scholar Article

  • Artin, E. Theory of braids. Ann. Math. 48101–126 (1947).

    MathSciNet MATH Google Scholar Article

  • Branscomb, D., Beale, D. & Broughton, R. New directions in braiding. J. Eng. Fiber Fabrics 811–24 (2013).

    Google Scholar

  • Kyosev, Y. Braiding Technology for Textiles (Woodhead, 2014).

  • Phillips, JP Carbon nano tube Litz wire for low loss inductors and resonators. US patent 8,017,864 (2011).

  • Merchant, P. et al. Braiding mechanism and methods of use. US patent 8,261,648 (2012).

  • Giszter, S., Kim, TG & Ramakrishnan, A. Method and apparatus for braiding micro strands. US patent 8,534,176 (2013).

  • Head, AA & Ivers, VM Rapidly configurable braiding machine. US patent application 14/959,661 (2016).

  • Duwel, A., LeBlanc, J., Carter, DJ & Kim, ES Directed assembly of braided, woven or twisted wire. US patent application 15/248,238 (2017).

  • Quick, R., Thress, C. & Ulrich, G. Braiding machine and methods of use. US patent application 16/754,830 (2020).

  • Zhang, M., Atkinson, KR & Baughman, RH Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 3061358–1361 (2004).

    ADS CAS PubMed Google Scholar Article

  • Murnen, HK, Rosales, AM, Jaworski, JN, Segalman, RA & Zuckermann, RN Hierarchical self-assembly of a biomimetic diblock copolypeptoid into homochiral superhelices. J. Am. Chem. Soc. 13216112–16119 (2010).

    CAS PubMed Google Scholar Article

  • Lu, Y. et al. Braiding ultrathin Au nanowires into ropes. J. Am. Chem. Soc. 14210629–10633 (2020).

    CAS PubMed Google Scholar Article

  • Joanny, JF & de Gennes, PG A model for contact angle hysteresis. J. Chem. Phys. 81552–562 (1984).

    ADS CAS Google Scholar Article

  • Sun, G., Liu, J., Zheng, L., Huang, W. & Zhang, H. Preparation of weavable, all-carbon fibers for non-volatile memory devices. Angelw. Chem. 12513593–13597 (2013).

    ADS Google Scholar article

  • Howe, GWO & Mather, T. The high-frequency resistance of multiply-stranded insulated wire. proc. R. Soc. London. HAS 93468–492 (1917).

    ADS Google Scholar article

  • Hurley, WG, Duffy, MC, Acero, J., Ouyang, Z. & Zhang, J. Magnetic circuit design for power electronics. In Power Electronics Handbook (ed. Rashid, MH) 571–589 (Elsevier, 2018); https://doi.org/10.1016/B978-0-12-811407-0.00019-2.

  • Schulz, MJ et al. New applications and techniques for nanotube superfiber development. In Nanotube Superfiber Materials (eds Schulz, MJ et al.) 33–59 (William Andrew, 2014).

  • Aydin, A. Electrospun Polymer Nanofiber Scaffolds for Functionalized Long Sub-micron Diameter Cables. PhD thesis, Harvard Univ. (2019).

  • Lima, MD et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338928–932 (2012).

    ADS CAS PubMed Google Scholar Article

  • Foerster, SA & Clemente, S. Optimized suture braid. US patent application 10/803,455 (2006).

  • Ayranci, C. & Carey, J. 2D braided composites: a review for critical stiffness applications. Comp. Struct. 8543–58 (2008).

    Google Scholar article

  • Singh, P. & Joseph, DD Fluid dynamics of floating particles. J. Fluid Mech. 53031–80 (2005).

    ADS MathSciNet MATH Google Scholar Article

  • Mao, Z.-S., Yang, C. & Chen, J. Mathematical modeling of a hydrophilic cylinder floating on water. J. Colloid Interface Sci. 377463–468 (2012).

    ADS CAS PubMed Google Scholar Article

  • Malagnino, N., Pesce, G., Sasso, A. & Arimondo, E. Measurements of trapping efficiency and stiffness in optical tweezers. Opt. Common. 21415–24 (2002).

    ADS CAS Google Scholar Article

  • Zhang, Z., Wang, X., Liu, J., Dai, C. & Sun, Y. Robotic micromanipulation: fundamentals and applications. Ann. Rev. Control Robot. Auton. System 2181–203 (2019).

    Google Scholar article

  • Wang, X.-B., Huang, Y., Gascoyne, PRC & Becker, FF Dielectrophoretic manipulation of particles. IEEE Trans. Ind. Appl. 33660–669 (1997).

    Google Scholar article

  • Tanase, M., Biais, N. & Sheetz, M. Magnetic tweezers in cell biology. In Methods in Cell Biology Flight. 83 (eds Wang, Y.-L. & Discher, DE) 473–493 (Academic, 2007).

  • Schneider, TM, Mandre, S. & Brenner, MP Algorithm for a microfluidic assembly line. Phys. Rev. Lett. 106094503 (2011).

    ADS PubMed Google Scholar article

  • Shenoy, A., Rao, CV & Schroeder, CM Stokes trap for multiplexed particle manipulation and assembly using fluidics. proc. Nat. Am. Soc. 1133976–3981 (2016).

    ADS CAS Google Scholar Article

  • Liu, Y. et al. Manipulation of nanoparticles and biomolecules by electric field and surface tension. Computer. Meth. Appl. Mech. Eng. 1972156–2172 (2008).

    ADS MathSciNet MATH Google Scholar Article